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Approximate ground-state wavefunctions for valence-bond (or Heisenberg) 
models are obtained both within N6el-state-based and within Kekul~-state- 
based resonance-theoretic approaches. Comparisons are made between these 
and other general approaches, with particular emphasis on organic ~--network 
systems. Attention is drawn to the manner in which the quality of the different 
approximation schemes changes with variations in structural characteristics 
of the system. It is suggested that resonance-theoretic ideas are most appropri- 
ate for (aromatic benzenoid) systems with low coordination number, whereas 
N6el-state based ideas are most appropriate for (3-dimensional) structures 
with higher coordination number (and little "frustration"). 
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I. Introduction 

Though the valence-bond (VB) model [1] for conjugated ~--networks was intro- 
duced in the 1930's, subsequently criticisms were advanced that have plagued 
the model's use to the present day. For instance, the difficulty of suggested 
solutions (essentially via configuration interaction) was found to increase exceed- 
ingly rapidly with system size, typically even if one restricts matrix diagonalization 
to the resonance-theoretic subspace of Kekul6 structures. In solid-state physics 
[2] the Heisenberg model for cooperative magnetism was developed and there 
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too criticisms were advanced, though they did not seriously hinder the model's 
use and, in particular, seemingly successful methods of solution were found [2, 3]. 
But the simple VB model is formally identical to the Heisenberg model (for the 
antiferromagnetically-signed isotropic spin-�89 case). Thus the differing degrees of 
success of the N6el-state-based and resonance-theoretic approaches, used respec- 
tively by physicists and chemists, might be surmised to indicate a serious difficulty 
in the latter approach. Further support for the view that the two approaches are 
inconsistent might be seen in the associated contrasting long-range orderings: 
for N6el-state-based approaches, a long-range alignment of spin orientations; 
and for Kekul6-structure-based approaches, only a short-range ordering of spin- 
alignments, although at least in some circumstances for the resonance-theoretic 
case another (competing) type of long-range order is exhibited [4-6]. 

Here we investigate these two types of approximation schemes. Particular 
emphasis is placed upon structures with lower (mean) coordination numbers, 
such as is characteristic of organic ~r-network systems. In fact the N6el-state-based 
approaches are rather poorly studied for such systems since these approaches 
have usually been applied to inorganic antiferromagnets which typically involve 
3-dimensional structures of relatively high coordination number. On the other 
hand resonance-theoretic studies seem to have been limited to small finite systems. 
Most of the usual [2, 3] mean-field approaches of solid-state physics reduce at 
zero-temperature to a single N6el state, and so make common ground-state 
comparisons. An oft-espoused antiferromagnetic spin-wave extension [2, 7] is 
also compared, as well as the singlet spin projection of the N6el state and a 
second-order perturbation correction [8] to the N6el-state result. For the Kekul6- 
state based viewpoint, in addition to the simple resonance theory [ 1] wavefunction 
ansatz we consider the even more primitive basis states consisting of single Kekul6 
structures. In seeking an accurate estimate of the exact ground-state energy for 
the graphite lattice so as to more fully gauge the reliability of these various 
approximations we include all available variational upper bounds, most of which 
are developed in the appendices. 

For the numerical work we utilize the simple nearest-neighbor VB model Hamil- 
tonian 

F 

H = 2 J  Z s,. sj (1) 
i ~ j  

where the sum is over nearest-neighbor pairs of sites of the molecular graph F, 
Sk is the spin operator for site k, and J > 0 is the exchange parameter. Generally, 
the Ndel states we consider will be restricted to alternant (or bipartite) graphs 
F, for which the sites may be partitioned into two sets A and B such that sites 
of one set are nearest neighbors only to sites in the other set. The standard N6el 
state then is [2, 3] 

10) = I] a(i) l-I fl(j), (2) 
i ~ A  j ~ B  

where a(k) and fl(k) represent the spin-up and spin-down states for site k. A 
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typical (unnormalized) Kekuld state is 

K 

IK)= I] {a(i)f l( j)-~(i)a(j)},  (3) 
i--i  

where the product is over a set K of disjoint edges of F such that every site is 
covered. For alternant F it is convenient to choose the indices i of  Eq. (3) to be 
in A. Though Kekul6 states may be defined on some non-alternant graphs, when 
F is alternant a necessary (but not sufficient) condition that such states exist is 
that A and B have the same numbers of sites. 

2. General comparisons 

First, standard matrix element techniques readily yield energies of single Kekul6 
and Nrel  states 

(KIHIK)/ (KIK) = - 3 j N  

<01UlO) = -lzjN, 
(4) 

where N is the number of sites and z is the mean coordination number of F (so 
that zN is the number of edges of F). From the plot of these energies in Fig. 1 
we see that the Kekul6 state energy is lower in the low (z-<3) coordination 
number region whereas the Nrel-state energy is lower in the high ( z -  3) region. 

Pauling and Wheland's resonance theory [1, 9] often improves upon the single 
Kekulr-structure energy. In this approach a simple sum over the different possible 
(global) Kekul6 structures is taken. To indicate an example of this improvement 
we then also plot in Fig. 1 an optimal resonance energy result (obtained from 
the minimum energy on the interpolated continuous Ae/J vs. Q/w curves of [5] 

Fig. 1. Comparison of energy estimates for the 
Heisenberg model on various representative graphs 
as a function of  mean coordination number z 
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where calculations are performed for extended poly-polyphenanthrene fusenes). 
However, the resonance-energy result does not always yield a significant improve- 
ment over the energy per site of a single Kekul6 structure even if there is more 
than one such structure. A lowering of the energy can only be obtained by 
admixing structures which differ only locally (i.e., at a few nearby sites) from a 
typical Kekul6 structure. (Otherwise the Hamiltonian matrix element connecting 
the structures will be vanishingly small.) The admixed structures can be viewed 
as being generated by local modifications of the reference structure which occur 
independently of distant regions of the structure. If  the number of such local 
modifications to a typical Kekul6 structure is size-extensive (i.e., scales - N ) ,  
then a nonzero improvement to the energy per site is expected. But also in this 
case, if the modification occurs independently as stipulated, the number #N of 
structures should scale exponentially with N. Thus the importance of Kekul6 
structures for size-extensive properties is expected [6, 10] to scale as the ratio 

In # N  
P =  N (5) 

Thence, the utility of Kekul6 structures should be greatest if p is suitably large. 
For certain conjugated hydrocarbons this criterion is not met: for instance, the 
poly-polyacenes [6] for which p approaches zero as their strip lengths increase, 
so that their resonance stabilization (per site) also approaches zero. 

In an analogy to resonance theory, one might take a similar equi-weight "sum" 
over all N6el-type states, with opposing spins on the A and B sets (or sublattices). 
Since all such N6el states can be obtained upon application of a spin-space 
rotation R(~)  to 10), the "sum" becomes continuous to give 

JO) = 8-~--~= ff dco R(o)lO). (6) 

In fact this projects out the overall singlet spin component of 10), so [~) is nonzero 
only if the number of A and B sites are equal (whence also the ground state is 
known [11] to be a singlet). But as shown in Appendix A this leads to an energy 

1 1 (qb[H[qb) z(~+-~)JN, (7) E(O) (OlO) 

so that there is no size-extensive improvement. In fact, regardless of the particular 
projection taken, there should [12] be no improvement over the per-site energy 
of a single N6el state for a general alternant F. 

One might seek to improve the N6el state result via a suitable perturbation- 
theoretic expansion [8]. Conveniently the (antiferromagnetically-signed) Ising 
model is taken as the zero-order Hamiltonian 

F 
n~ Y s ~  (8) 

i~ j  
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since it has 10) as its ground-state (which is nondegenerate for finite connected 
F, and J > 0). Through second-order the ground-state energy, for F with all sites 
of the same (integer) coordination number, is [8] 

1 Z 2 
E~ = JN. (9) 

4 z - 1  

When more than one coordination number occurs, E2 depends [8] upon further 
details of F, but in Fig. 1 we have plotted the function of (9) as a generic estimate 
for E2. As often occurs with second-order estimates, this result presumably is 
lower than the true ground-state energy. It is seen that the energy correction is 
largest for smaller z, so that again the N6el state picture is indicated to be less 
accurate in the region of small z. 

3. Specific systems 

An example providing further evidence is that of a single cycle. For purposes of 
comparison we plot in Fig. 2 various energy estimates as a function of (even) 
cycle-size N. These plotted results are (in order of occurrence in the figure) for: 
(a) a single N~el state with energy as in (4); 
(b) a single Kekul~ state with energy as in (4); 
(c) the singlet spin projected N~el state result of (6); 
(d) the resonance theory result; 
(e) the exact result, obtained numerically via [13, 14] configuration interaction 

for N-< 22; 
(f) a standard [7] nonvariational antiferromagnetic spin-wave result; and 
(g) the second-order perturbation-theoretic correction of (9) to the N~el-state 

picture. 
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Fig. 2. Compar isons  of various energy estimates for 
a cyclic ring as a function of its (even) size 
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For this cyclic chain there are just two Kekul6 structures, for whch the resonance- 
theory energy is evaluated to be 

3 / 2 N / 2 + 4 \  N. 
ERT = - ~ ~ ) J  , (10) 

so that no size extensive correction to the energy for a single Kekul6 structure 
is obtained as N ~ co. This is in agreeent with the vanishing of  the ratio p = In 2 /N,  
as N ~ co. But for small N where p is larger there is seen to be notable improve- 
ment. Similar comments apply to the singlet-spin projected Nrel  state, though 
typically the resonance theory result is better. The perturbative N~el-state-based 
result improves upon a single Nrel state, but has an oppositely-signed error of 
roughly the same size as tffat of  the simple resonance theory. Finally the standard 
antiferromagnetic spin-wave result, as described in Appendix B, apparently 
compares quite favorably with the exact results but merits special comment. In 
fact this Nrel-state-based approach, which proceeds via transformation to Boson 
operators, has [7, 15] serious defects: first, the Hamiltonian is expanded in powers 
of  Boson creation and annihilation operators followed by truncation to just 
quadratic (and scalar) terms; and second, nonphysical spaces, corresponding to 
fictitious higher Boson-occupancies are admixed. Marshall [15] is especially 
critical; he notes the unphysical states are very strongly admixed, as is clearly 
indicated in that the sublattice magnetization (per site) for cyclic chains is 
calculated to be (Unphysically) infinite. It seems that the reasonable energy 
estimate is an accidental artifact of several non-validated approximations. For 
square-planar and cubic lattices (or higher-spin Heisenberg models) Marshall's 
criticisms [15] tend toward lesser severity. One approach [16] to rectify the 
difficulties in the spin-wave result leads to a variational bound that is somewhat 
more difficult to compute and gives an energy near that of the Kekul~ structure. 

From the data of  Fig. 2 it seems perhaps that the resonance-theoretic wavefunction 
is superior to the simple Nrel-state wavefunction or its projection. As the size 
of the system is increased the energy for this projection worsens, and as the 
per-site number of  Kekul~ structures (as measured by p) decreases the resonance- 
theory worsens too. For the ring (especially as N ~  oo) there are [17] many other 
calculations (some related either to Ngel-state ideas or to resonance theory); but, 
they are passed over here, because their increased complexity is sufficient to have 
(so far) prevented their application to more complicated systems. 

The case of  graphite is of  special interest, in that this achieves the largest 
coordination number (z = 3) possible for conjugated hydrocarbons. Further, our 
emerging view suggests that larger z provides a more severe test of resonance- 
theory (compared with Ngel-state ideas). For graphite there seem to be few 
variational bounds that have previously been implemented for the VB model, 
and in particular the exact answer is not presently known. One type of bound 
may be obtained through computations on a lattice fragment that if repeated 
over and over can exactly cover the lattice. In fact, the energy per site of the 
lowest singlet state of  such a fragment (with an even number of sites) is an upper 
bound to that for the lattice. This is explained in Appendix D following a 
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Table 1. Energy estimates for graphite lattice ground-state 

Method E/JN 

4-site renormalization -0.7305 
N6el state -0.7500 
Single Kekul~ structure -0.7500 
7-site renormalization -0.8388 
Resonance theory bound -0.9238 
Resonance theory estimate -0.929 
Exact bound via benzene fragment -0.9343 
Exact bound via naphthalene fragment -0.9540 
Exact bound via fragment of 4c -0.9657 
Exact bound via fragment of 4d -0.9719 
Exact bound via fragment of 4e -0.9902 
Exact bound via fragment of 4f -0.998 
Antiferromagnetic spin-wave estimate -1.106 
Second-order N6el-state perturbation -1.125 
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description in Appendix C of a related renormalization-group approach [18] for 
lattice fragments of other spin multiplicities. A point of some interest is that these 
(currently) best upper bounds have the type of long-range order characteristic 
of resonance-theoretic wavefunctions rather than that of the N6el state. These 
numerical computations of fragment energies are carried out via an efficient 
unitary group method [13]. The various graphite energy estimates we obtain are 
reported in Table 1. It is seen that the first-order renormalization-group upper 
bounds based upon 4- and 7-site clusters of Fig. 3 are not as good (i.e., as low) 
as the resonance-theory results. The best upper bounds evidently are obtained 
for the sequence of spin-singlet fragments of Fig. 4. From these results we estimate 
the graphite ground-state energy to be roughly midway between the resonance 
theory results and the second-order N6el-state perturbation result. The antifer- 
romagnetic spin-wave result, though apparently again experiencing a cancellation 
of errors, we feel is still suspect because of the general defects mentioned earlier. 

Yet another system providing evidence is found in the work of Anderson and 
Fazekas [19] on the triangular-lattice (spin-�89 Heisenberg model. Having many 
3-cycles this lattice exhibits much frustration, so that the generalized (3-sublattice) 
N6el state gives an energy that is rather high in comparison with the N6el-state 
energy on unfrustrated lattices of the same coordination number, z = 6. In fact, 

Fig. 3. The 4- and 7-site clusters used in a 
(near) conventional real-space renormaliz- 
ation group approach 
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Fig. 4. Six fragments which can cover the 
graphite lattice as explained in the text. 
These fragments represent the best upper  
bounds  of  systems of  a given number  of  
fused rings that we have investigated 

this (3-sublattice) N6el-state energy is the same as that of a single Kekul6 structure 
on the triangular lattice, and a resonance-theoretic combination of Kekul6 struc- 
tures should only improve upon this energy. Then in view of evidence, much like 
that we find for the "borderline" case of graphite, Anderson and Fazekas suggest 
[19] that the ground state for the case of a triangular lattice is well described as 
being of the resonance-theoretic type. Their estimates for the energy of the 
resonance-theory wavefunction could presumably be improved upon using our 
graph-theoretic methods [5]. Similarly our present upper-bounding methods 
should make improvements; indeed the 4 x 4 diamond-shaped fragment from the 
triangular lattice leads to an upper bound of -0.825767 J for the ground-state 
energy per site, noticeably surpassing their best value of -0.7432 J. It is of some 
interest that for the triangular lattice Anderson and Fazekas find evidence for a 
(different) type of Kekul6-structure-related long-range order. 

4. Conclusion 

The evidence we have gathered here clarifies the applicability of two contrasting 
qualitative views of the nature of the ground state of the VB (or spin-�89 Heisenberg) 
model. Basically it seems that N6el-state and resonance-theoretic descriptions 
apply best under different (structural) conditions. The suggestions from our 
evidence may be summarized in two propositions: 

I. Resonance-theoretic descriptions are most appropriate for (benzenoid or aro- 
matic [20]) systems with low mean coordination number (z ~ 3) and with many 
Kekul~ structures per site (p-> 0.05). 

II. N6el-state-based descriptions are most appropriate for (3-dimensional) struc- 
tures with high mean coordination numbers and low extents of frustration (i.e., 
few small odd cycles of antiferromagnetically-signed interactions). 

Still the argument from the currently available data is not completely conclusive, 
in part because of the difficulty in obtaining reliably accurate results for large 
system solutions. But there remains a (perhaps more persuasive) argument favor- 
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ing our propositions: first, I is supported by the experimental success of both 
qualitative [9] and quantitative [1] resonance models in application to benzenoid 
�9 r-networks (satisfying the conditions of I); and second II is supported by similar 
experimental successes of N~el-state based theories as applied [3] in the field of 
cooperative magnetism (to systems satisfying the conditions of II). In fact the 
parenthetic restrictions to benzenoid [20] systems in I and 3-dimensional systems 
in II are suggested more from the areas of these experimental successes than 
from our data in the preceding sections. 

Of course, these empirical successes might be more pronounced for more accurate 
models than for the nearest-neighbor VB model discussed here. In fact, there is 
some evidence for this in the application to aromatic benzenoids, in that higher- 
order corrections tend to enhance the Kekul6-structure approaches while detract- 
ing from N6el-state approaches. That is, for aromatic benzenoids the next correc- 
tions to H of (1) entail [19] next-nearest-neighbor interactions (etc.) that have 
a sign to "frustrate" N6el-state ordering. Indeed at somewhat high strengths these 
interactions yield [19] models for which the Kekul6 structures are exact (degener- 
ate) ground states. Then in a first-order degenerate perturbation treatment based 
upon such 0-order models with the perturbation involving the additional nearest- 
neighbor interaction, one would seek to diagonalize a matrix like that for H of 
(1) for the restricted subspace of Kekul6 structures. But of course this is essentially 
what has often been done in organic chemistry, though the motivation has often 
been more empirically based. In solid-state physics also other higher-order 
corrections sometimes seem to enhance N6el-state descriptions; for instance, 
anisotropic spin-dependent Ising-type perturbations often occur [3] for transition 
metals and especially rare earths. 

In conclusion it seems that the propositions (I and II) we have advanced might 
resolve otherwise apparently conflicting views. Further work to separate features 
of the model from those of the approximate solutions would be useful. 

Appendix A: projected N6el state 

The wavefunction ansatz of (5) may be rewritten as 

[qb> = Gol0), (A.1) 

with ~o the singlet spin projection operator. Because H commutes with ~o, which 
is idempotent, 

(~IHI~> = <01H~ol0). (A.2) 

Now the spin rotations (in 0o) are representable as 

R(a,  fl, T) = ei~Sz ei~Sy ei~'s~, (A.3) 

where a, /3, y are Euler angles (ranging over 2~-, ~r, 2~r) and where S ~ are 
components (/., = x, y, z) of the total spin. Then because 10> is an eigenket to S z 
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(as well as to e ivsz and e i~sz, which also commute with H),  

(*IHI~> = �89 ~o ~ sin f l (o[n ei13s~10) dfl. (A.4) 

Next the expression of (1) is used and e i'sy is written as the N-fold product of 
rotations for the spin of each site, 

(0[H eiosYl0 ) = 2J Z (Olsp. Sq l-I eiae[0) �9 (A.5) 
p ~ q  r 

Each single site is of  spin-1 so that the single-site rotations expand simply 

�9 "(~/3) /3 + /3 
e'~S~'= ~ n !  (s,Y)" =COS~+(Sr --Sj) sin~-. (A.6) 

n = 0  

Then the matrix elements on the right of  (A.5) are expanded into 1- and 2-site 
products 

(0Is,. sq 17 ei'Srrl0) 
r 

(A.7) 
~ P,q  

=(tr(P)cr(q)lsp'sq e i~ ei~lcr(P)cr(q)) I] (~176 
r 

where tr(r) is the spin of site r in 10). Substitution of (A.6) into (A.7), then leads 
to 

(O]$p'SqI]eiBS~lO)":r - - (1--~  C0S2~) (COS ~ )  N-2 (A.8) 

and subsequently 
3 N - 2  

= -.mZ fo  Sin . cos= (cos (A.9) 

A similar development of the overlap yields 

(dP,~)=i loSin fl. (cos~) N d/3. (A.10) 

The integrals in (A.9) and (A.10) are readily evaluated by taking cos 2 (/3/2)= 
(1+cos fl)/2 and changing the integration variable to u =  l+cos f l .  The final 
result is as quoted in (7). 

Appendix B: antiferromagnetic spin-wave theory 

The approach is a standard [7] extension of Holstein and Primakoff's [22] 
ferromagnetic spin-wave theory. A transformation is made 

~ • 4 -  ap~/1-apap, peA 
=~_= + : • (B.1) 

sp [x/l_bpbeb,, pcB, 

+ a~-, + b ;  being Boson creatiQn and annihilation operators. The spin with ap, bp, 
or(r) for site r in [0) is the 0-Boson state for mode r, while -o ' ( r )  is the 1-Boson 
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state, so that the N6el state is the vacuum. Higher Boson occupation numbers 
are unphysical, with only the (block-diagonalized) representation of the spin 
operators of (Bi) (and of the associated H) on the subspace of 0- and 1-Boson 
modes corresponding to the physical situation. The standard approach to expand 
the square roots of (B1) in powers of the number operators, followed by trunca- 
tion, then generally leads to (nonvariational) approximations which admix the 
undesired nonphysical portion of the space. Such truncation of H at terms no 
more than quadratic in the Boson operators, yields a form that is diagonalizable 
by the usual Bogoliubov-type canonical transformations. The resulting ground- 
state energy estimate is [7] (allowing for complex Yk) 

EAfsw = - - ~ Z + ' ~ . ~  JN, (B.2) 

where the k are wavevectors associated to just one of the two (assumed equivalent) 
sublattices and where 

~k ~ ~ eik'~ (B.3) 
S 

with the 8 being the nearest-neighbor displacement vectors for the chosen sublat- 
rice. For the cyclic-chain case (B2) reduces to 

I 4 2~r 3+ 
E~r~w 1 - 2  ~ c t n ~ ,  N = 4 , 8 , 1 2 , . . .  

- )  3 2 (B.4) JN 
[ - ~ + ~  ctn N '  N = 6, 10, 14, 18, .. . .  

For the N ~ oe limit of the graphite lattice (B.2) reduces to 

EAfsw=-9q-~JN 4 47r2 f= f~_x/1-cos(a+fl)'cosa.cosfldadfl, (B.5) 

which was evaluated numerically. 

Appendix C: real-space renormalization 

Real-space renormalization techniques very much like that reviewed by Caspers 
[18] for Heisenberg models are briefly described here. One starts with a partition- 
ing of the system lattice into equivalent clusters. The collection of isolated clusters 
are to be considered as a zero-order system and the remaining intercluster 
interactions treated as a perturbation. Treatment of the zero-order ground-state 
eigenspace through first-order of (generally degenerate) perturbation theory yields 
an upper bound to the perturbed ground-state energy. Further the resulting 
effective Hamiltonian defined just on this zero-order eigenspace typically has an 
especially simple form very like that of the initial Heiseberg model. This similarity 
can be especially pronounced if, when the clusters are contracted to super-sites, 
the resulting inter-super-site interactions form a lattice of the same type as the 
original. 
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As a first case on the graphite lattice we consider the 4-site clusters of Fig. 3. In 
this renormalization process four ( n -  1)th stage clusters combine to form an nth 
stage cluster, the overall lattice at any stage being that of  graphite. For example 
Fig. 5 illustrates an (n)th stage cluster in terms of  (n - 1)th stage clusters. The 
Hamiltonian for an nth stage cluster is 

Hn =4%n-1+ 2J,(sa" Sb-F.$a" 8c'~-$a" Sd), ( C . 1 )  

where each of the ( n - 1 ) t h  stage clusters (numbered in accordance with the 
pattern of  Fig. 3) have 4" sites, a per-site energy of  e,-1, and an exchange-coupling 
parameter J,  to other (n  - 1)th stage clusters. Coupling spins Sb, So, and Sd together 
to s(a), one obtains the interaction of (C.1) as so" s(a). Thence the eigenvalues 
of overall spin S are seen to be 

En(S,s(a))=4nl~n_l+Jn{S(S+l)-Sn_l(Sn_l+l)-s(a)(S(a)+l)}, (C.2) 

where S,_1 is the ground-state spin for an (n - 1)th stage cluster. Now the nth-stage 
ground state may be verified to have s(~)= 3S,_1, overall spin 

S. = S = 2S.-1 = 2 "-1 (C.3) 

and overall energy 

En(2Sn-1,3Sn--1) ----" 4%n-1-2Sn-1(3Sn-1 + 1)J,. (C.4) 

Recurrence relations for the J, result from matrix element analysis. Let IA; M} 
be a ground state (with z-component of spin M) for an nth stage cluster A. Then 

(AMA x BMBI2J.se. sfIAM'A x BM'B) 

= 2.I. E (A; Ma[s~[A; MX)(B; MBIs~[B; M'~}, (C.5) 

where se and sy are spins for ( n -  1)th stage clusters in A and B, respectively. 
But the Wigner-Eckart  theorem [23] may be applied to give, e.g., 

(A; MA[S~e[A; M~} = r , (A;  MA[s,~IA; M'A}, (C.6) 

',__( 
Fig. 5. An (n + 1)th stage duster  built-up from four nth stage 
dusters each of  which in turn is built-up from four ( n -  1)th 
stage clusters each represented by a circle here 
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where yn is an appropr ia te  ratio of  " reduced  matrix elements".  This is given as 

(A; MIs~IA; M) 1 
7 " -  (A; MiS~A[A; M ) -  3 M  (A; M]s~a>)A; M) (C.7) 

and this last matrix element may,  for instance, be evaluated by Eq. (7) on p. 61 
(Sect. 8.3) o f  C o n d o n  and Shortley's  text [23] to give 

1 3S._1+ 1 
,),. ( c . 8 )  

3 2S ,_1+ 1" 

Thus 

Jn+ l 2 = y . J .  (C.9) 

and the final result for  the energy per site is 

n--1  

e, = e , _ 1 - 4 - " .  2"-1(3 " 2 " - 2 + 1 )  [I  YmJ,2 (C.10) 
m~l 

where el = - 5 J / 8 .  For  the lattice we take the limit as n ~ oo. 

As a second case we consider 7-site clusters, two of  which are shown in Fig. 6. 
In  this si tuation both  the lattice and the cluster spin remain the same upon  
renormalizat ion.  The development  still parallels the 4-site case, and key use is 
again made  of  the Wigner -Eckar t  theorem. The energy per site that  results is 

E1 
(c.11) 

7 - - 

where E1 is the energy of  a single first-stage cluster, and the Yb, ~e are reduced 
marix element ratios for  sites b, e of  Fig. 3. They are the same at every stage, 

7i = 4 ( A ;  MIsA" s,[A; M). (c.12) 

Fig. 6. Two 7-site clusters illustrating the three intercluster couplings, 
which (with reference to the labelling of Fig. 3) may be taken to be 
between two e-type, two b-type, and two e-type sites 

\ I \ 
\ I \ 
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The quantities E1 and yi were evaluated numerically from a computer diagonaliz- 
ation of the basic 7-site Hamiltonian. 

Appendix D: fragments, bounds, and long-range order 

First consider a spin-singlet fragment which when iterated exactly covers F. 
Letting IA) and [B) be two such disjoint fragments containing sites i and j, one 
may readily verify 

(A0x BOls,. sjlAOx B0)=0 (D.1) 

using either the Wigner-Eckart theorem (as in Appendix C) or Pauling [24] 
"island counting" rules. As a consequence the energy for a wavefunction which 
is a product of those for such singlet fragments is simply a sum of the fragment 
energies. This approach using singlet fragments may also be viewed as a real-space 
renormalization-group approach where the Hamiltonian renormalizes to a scalar 
at the first step. 

Next the energies per site as calculated for such first-order renormalization group 
related approaches provide upper bounds to the energy per site of the system F. 
For the case of singlet fragments this is clear since the energy is calculated in 
the Rayleigh-Ritz functional form. For the renormalization-group approach of 
Appendix C it is also true because first-order degenerate perturbation Hamil- 
tonians if solved exactly also yield a Rayleigh-Ritz result. 

It may also be noted that wavefunctions which are products of spin-singlet 
fragments display long-range spin-pairing order, perhaps somewhat diminished 
from that of the resonance-theory wavefunctions. This is most readily seen for 
an infinite (cyclic) chain, where the singlet fragments are even-length subchains, 
so that each contributing Rumer (covalent VB) structure has a limited finite length 
for spin pairings. But as described elsewhere [4] a finite-range cut-off for such 
spin-pairings leads to long-range spin-pairing order. Related arguments for ben- 
zenoid F are indicated in [5] when soliton-antisoliton vacuum fluctuations are 
discussed. 
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